Let AB, CD, EF, GH, and JK be five diameters of a circle with center at O. In how many ways can three points be chosen out of A, B, C, D, E, F, G, H, J, K, and O so as to form a triangle?

160

From CAT 2017 – Quantitative Aptitude – Modern Maths – Permutation and Combination, we can see that,

There are 11 points from which a triangle can be formed. But there are 5 lines which have 3 points linearly.

Number of triangles formed = 11C3 â€“ 5 (because of the lines)

165 â€“ 5 = 160 triangles

Answer: 160

Quantitative Aptitude – Modern Maths – P&C – Q1: How many four digit numbers, which are divisible by 6, can be formed using the digits 0, 2, 3, 4, 6, such that no digit is used more than once and 0 does not occur in the left-most position?

Quantitative Aptitude – Modern Maths – P&C – Q2: In how many ways can 8 identical pens be distributed among Amal, Bimal, and Kamal so that Amal gets at least 1 pen, Bimal gets at least 2 pens, and Kamal gets at least 3 pens?

Quantitative Aptitude – Modern Maths – P&C – Q3: In how many ways can 7 identical erasers be distributed among 4 kids in such a way that each kid gets at least one eraser but nobody gets more than 3 erasers?

Quantitative Aptitude – Modern Maths – Progressions – Q1: If a1 = 1/(2*5), a2 = 1/(5*8), a3 = 1/(8*11),â€¦â€¦, then a1 + a2 +â€¦â€¦..+ a100 is

Quantitative Aptitude – Modern Maths – Progressions – Q2: Let a1, a2, a3, a4, a5 be a sequence of five consecutive odd numbers. Consider a new sequence of five consecutive even numbers ending with 2a3.

Quantitative Aptitude – Modern Maths – Progressions – Q3: Let a1, a2,â€¦â€¦..a3n be an arithmetic progression with a1 = 3 and a2 = 7. If a1 + a2 + â€¦.+a3n = 1830, then what is the smallest positive integer m such that m (a1 + a2 + â€¦. + an ) > 1830?

Quantitative Aptitude – Modern Maths – Progressions – Q4: If the square of the 7th term of an arithmetic progression with positive common difference equals the product of the 3rd and 17th terms, then the ratio of the first term to the common difference is

Quantitative Aptitude – Modern Maths – Progressions – Q5: An infinite geometric progression a1, a2, a3,â€¦ has the property that an = 3(a(n+ l) + a(n+2) +â€¦.) for every n â‰¥ 1. If the sum a1 + a2 + a3 +â€¦â€¦. = 32, then a5 is

Permutation and Combination â€“ Fundamental Principle of Counting

Permutation and Combination â€“ Distribution of Objects

How to find Rank of a Word in Dictionary (With or Without Repetition)

Set Theory- Maximum and Minimum Values

How to solve questions based on At least n in Set Theory for CAT Exam?

Sequence and Series Problems and Concepts for CAT 2017 Exam Preparation

Basic Probability Concepts for CAT Preparation

**a)** 900+ Videos covering entire CAT syllabus**b)** 2 Live Classes (online) every week for doubt clarification**c)** Study Material & PDFs for practice and understanding**d)** 10 Mock Tests in the latest pattern**e)** Previous Year Questions solved on video